A Kernel-Based Fisher Discriminant Analysis for Face Detection

نویسندگان

  • Takio Kurita
  • Toshiharu Taguchi
چکیده

This paper presents a modification of kernel-based Fisher discriminant analysis (FDA) to design one-class classifier for face detection. In face detection, it is reasonable to assume “face” images to cluster in certain way, but “non face” images usually do not cluster since different kinds of images are included. It is difficult to model “non face” images as a single distribution in the discriminant space constructed by the usual two-class FDA. Also the dimension of the discriminant space constructed by the usual two-class FDA is bounded by 1. This means that we can not obtain higher dimensional discriminant space. To overcome these drawbacks of the usual two-class FDA, the discriminant criterion of FDA is modified such that the trace of covariance matrix of “face” class is minimized and the sum of squared errors between the average vector of “face” class and feature vectors of “non face” images are maximized. By this modification a higher dimensional discriminant space can be obtained. Experiments are conducted on “face” and “non face” classification using face images gathered from the available face databases and many face images on the Web. The results show that the proposed method can outperform the support vector machine (SVM). A close relationship between the proposed kernel-based FDA and kernel-based Principal Component Analysis (PCA) is also discussed. key words: face detection, kernel Fisher discriminant analysis, kernel principal component analysis

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modification of Kernel-based Fisher Discriminant Analysis for Face Detection

This paper presents a modification of kernel-based Fisher Discriminant Analysis (FDA) for face detection. In face detection problem, it is important to design a twocategory classifier which can decide whether the given input sub-image is a face or not. There is a difficulty to train such tow-category classifiers because the “non face” class includes many images of different kinds of objects and...

متن کامل

Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation

Face images are subject to changes in view and illumination. Such changes cause data distribution to be highly nonlinear and complex in the image space. It is desirable to learn a nonlinear mapping from the image space to a low dimensional space such that the distribution becomes simpler, tighter and therefore more predictable for better modeling of faces. In this paper, we present a kernel mac...

متن کامل

Multiple Kernel Learning in Fisher Discriminant Analysis for Face Recognition

Recent applications and developments based on support vector machines (SVMs) have shown that using multiple kernels instead of a single one can enhance classifier performance. However, there are few reports on performance of the kernel‐based Fisher discriminant analysis (kernel‐based FDA) method with multiple kernels. This paper proposes a multiple kernel construction ...

متن کامل

Kernel Discriminant Analysis Based on Canonical Differences for Face Recognition in Image Sets

A novel kernel discriminant transformation (KDT) algorithm based on the concept of canonical differences is presented for automatic face recognition applications. For each individual, the face recognition system compiles a multi-view facial image set comprising images with different facial expressions, poses and illumination conditions. Since the multi-view facial images are non-linearly distri...

متن کامل

Kernel-based Weighted Discriminant Analysis with QR Decomposition and Its Application to Face Recognition

Kernel discriminant analysis (KDA) is a widely used approach in feature extraction problems. However, for high-dimensional multi-class tasks, such as faces recognition, traditional KDA algorithms have a limitation that the Fisher criterion is non-optimal with respect to classification rate. Moreover, they suffer from the small sample size problem. This paper presents two variants of KDA called ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 88-D  شماره 

صفحات  -

تاریخ انتشار 2005